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Abstract: Nonlinear System identification has a rich history spanning at least 5 decades. A
very flexible approach to this problem depends upon the use of Volterra series expansions.
Related work includes Hammerstein models, where a static nonlinearity is followed by a linear
dynamical system, and Wiener models, where a static nonlinearity is inserted after a linear
dynamical model. A problem with these methods is that they inherently depend upon series
type expansions and hence it is difficult to know which terms should be included. In this paper we
present a possible solution to this problem using recent results on rank-constrained optimization.
Simulation results are included to illustrate the efficacy of the proposed strategy.

1. INTRODUCTION

System identification tools are frequently used to fit mod-
els to experimentally obtained data from a system. There
is a vast literature in the topic (Ljung, 1999). Predomi-
nantly the literature deals with the case of linear systems.
However, some systems are known to exhibit inherently
nonlinear behaviour.

Since nonlinear includes anything other than linear there
are endless options for what structure model should be
chosen. A broad classification of model types includes
Black Box, White Box and Grey Box. The key distinction
is that black box methods use a flexible structure under
the “one-size-fits-all” philosophy. On the other hand, white
box methods build the model using physical/Biological
understanding. Grey Box lies between these extremes and
utilises elements of both Black and White Box methods.

An advantage of Black Box methods is that they are
flexible and can be used in situations where it is difficult
to obtain a good model structure from physical reasoning.
The current paper focuses on this class of models.

An inherent feature of Black Box methods is that they
depend upon series type expansions. Hence, there is a
problem of how to choose which terms to include and
which to exclude in the series. Indeed, if used naively, then
there is the potential for including too many terms leading
to overfitting. This is a well known phenomenon which
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is often termed the Bias-Variance problem. Specifically,
including too few terms will lead to deterministic bias
errors whereas including too many terms will lead to
variance errors due to the impact of noise on the parameter
estimates.

The topic of bias-variance trade-off has been addressed in
many recent papers, see for example (Chen et al., 2012;
Mendes and Billings, 2001). Standard tools for restricting
the complexity of a model include the ¢; heuristic (Candes
et al., 2006), nuclear norm (Fazel et al., 2001). and rank
constrained optimisation, see e.g. (Delgado et al., 2014a;
Markovsky, 2013).

Here we adopt the rank-constrained optimisation ap-
proach. We apply this idea to the problem of choosing
which terms of a series expansion to include in a nonlinear
model. We believe that this is the first time that this class
of methods has been applied in the context of nonlinear
system identification.

Methods for imposing rank constraints are closely related
to the problem of rank-minimisation. The latter problem
has received considerable attention over the past few
decades. The focus has centred on various approximations
such as trace, nuclear norm and log-det heuristics (see
e.g. (Fazel et al., 2001, 2003)). These developments have
been applied to several system identification problems,
e.g. to identify a moving bed process from incomplete
data sets (Grossmann et al., 2009), identification of Box-
Jenkins models (Hjalmarsson et al., 2012), and for system
identification with missing inputs and outputs (Liu et al.,
2013). Other approaches use the related idea of structured



low-rank approximation. This idea has been applied to
several system identification problems. For example, it has
been used for identification of periodically time-varying
systems (Markovsky et al., 2014) and system identification
in the behavioural setting (Markovsky, 2013).

There also exist approaches that solve rank-minimization
problems exactly, see e.g (d’Aspremont, 2003). However,
computational complexity of the associated methods is
formidable even for small-size problems. Most heuristics
developed for rank-minimization can also be applied to
rank-constrained problems. However, when using these
heuristics, the condition on the rank is not set as a hard
constraint.

Recently in (Delgado et al., 2014a,b), a novel approach to
dealing with sparsity and rank constraints has been pro-
posed. The current paper builds on this earlier work and
applies the approach to nonlinear system identification.

The layout of the remainder of the paper is as follows:
In Section 2, we formulate the problem of interest. In
Section 3 we discuss rank and cardinality constraints.
Section 4 shows how the approach can be adapted to
solve a nonlinear system identification problem. Simulated
examples are given in Section 5. Finally, conclusions are
drawn in Section 6.

Notation and basic definitions: rank(A) denotes the rank
of a matrix A. \;(A) denotes the i-th largest eigenvalue
of a symmetric matrix A, A o B denotes the Hadamard
product of A and B, A > 0 denotes that A is positive
semidefinite, and A > B denotes that A — B > 0. We
represent the transpose of a given matrix A as AT. S™
denotes the set of symmetric matrices of size n x n, and
S? the set of symmetric positive semidefinite matrices, i.e.
St = {A € S"|A = 0}. 1 denotes a vector with ones as
entries. ||| denotes the Frobenius norm.

2. NONLINEAR BLACK-BOX MODELS

There are many options for nonlinear models including
Volterra expansions and neural networks. For example, the
Volterra model has the following generic structure

N
y(k) =Y ha(m)u(k —n)

n1:1

N N
+ Z Z ha(ny, ne)u(k —ny)u(k —ng) + ...
’I’L1:1 ’I’L2:1
-+ (k) (1)
where {h(n1,...)} are generalised impulse response terms,

and y(k), u(k) and n(k) denote the output, input and
additive noise, respectively.

It is readily seen from (1) that the model potentially has
a huge number of parameters, namely N + N? +... + NP
where P is the order of the expansion. There is thus clearly
a potential for over-fitting especially when little data is
available.

A special case of (1) occurs when the choice

h (nl)
h . =<7
(n1,ng, ,np) {0 otherwise

ifni=no=---=np

(2)

This simplification leads to a generalised Hammerstein
model structure

P N
y(k) = > hi(n)ulk —m)’ +n(k) (3)
j=1n1=0
In the sequel, and for sake of simplicity of exposition, we
will focus on the above structure. However, the extension
to more general instances of the model 1 are straightfor-
ward.

Our goal will be to use rank-constrained optimisation ideas
to restrict the class of impulse response functions and the
set of terms of {u(k)?} used in the model.

3. OVERVIEW OF RANK-CONSTRAINED
OPTIMISATION

We have previously applied rank constrained optimisation
to a class of problems in linear system identification (see
(Delgado et al., 2015)). Our goal here is to extend these
tools to the nonlinear case. We first summarise the key
elements of rank constrained optimisation that we will use.

3.1 Rank-Constrained optimisation

Consider the following rank-constrained optimisation prob-
lem

Prco : min f(.]?)

zERP
subject to x € Q
rank(G(z)) <r
Also, consider the following optimisation problem involv-
ing bilinear constraints

P’rcoequiv : xE]RIT’I}Ii/{/lES" f(l‘)
subject to =z € Q
G(z)W = Opmxn
0=xwW=I,

trace(W) =n —r
where 2 C RP is a constraining set, f : RP — R is the
objective function and G : RP — R™*",

The following result shows that Pr., and Prcocquiv are
equivalent.

Corollary 1. (Delgado et al., 2015) z* € RP is a global
solution of P,.., if and only if there exist a W* such that
the pair (z*, W*) is a global solution of Pycoequiv-

Proof. See (Delgado et al., 2015). Background of the
proof can be found in (Delgado et al., 2014b).

A key observation is that the problem P,., is combina-
torial in nature whereas problem P,.coequiv can be solved
using standard tools of nonlinear programming. Details are
given in (Delgado et al., 2014a).

8.2 Cardinality-constrained optimisation

Problem P,.., can also cover optimisation problems subject
to cardinality constraints, i.e. constraints in the number
of non-zero elements of a vector. This is achieved, by
considering G(z) to have a diagonal structure, i.e. G(z) =
diag(x), then rank(G(z)) = card x. Hence if we consider



the following cardinality-constrained optimisation prob-

lem
f(z)

subject to cardx < r

Peard : min
z€QCR™

then using Corollary 1, this problem can be formulated as
an optimisation problem subject to bilinear constraints as
follows

n_ o f(z)

mi
zEQCR™ , weRN
subject to x;w; = 0;

1Tw=n—r

Pcardequiv :

The equivalence beween Peqrqg and Pegrdequiv has been re-
cently obtained independently in (Burdakov et al., 2015).
In addition in (Mitchell et al., 2013; Piga and Té6th, 2013)
optimisation problems where the cost contains a term that
induces a cardinality constraint has been analysed. The
approach considered in these papers can be considered
as a special case of the equivalence between P.q.q and
Peardequiv, see (Delgado et al., 2014b).

3.8 Group-constrained optimisation

A problem closely related to that of cardinality-constrained
optimisation is that of group-constrained optimisation.
The idea of group-handling in sparse representations has
received attention in the last decade, see e.g. (Kim et al.,
2006; Yuan and Lin, 2006). These methods are based on
the ¢1-norm heuristic. Here we show how group constraints
can be incorporated into cardinality-constrained optimisa-
tion problems.

In problem Peqrdequiv, the variable w, at the optimum is a
binary variable taking the value w; = 1 for those elements
corresponding to z; = 0. Additional constraints over w can
be included in the optimisation problem to manage how
the zero and non-zero elements of x interact.

To illustrate these ideas, consider the problem of min-
imising f(z) subject to cardz < r, with x € R™, with
m and r being even numbers. Moreover, say we split the
vector x into two groups: Group G1 consisting of the first
m/2 elements of z, and group G2 consisting of the last
m/2 elements of . An interesting group constraint in this
framework is to require that when the i-th element of G1
is non-zero, i.e. x; # 0, then the i-th element of G2 must
be zero, i.e Ty, /24 = 0, and vice versa. Thus, a non-zero
element in one group induces a zero in the other group.
The associated optimisation problem can be formulated
as the following group-constrained optimisation problem:

xER’I’EgleRm f(.%‘)
subject to x;w; =0 i=1,--,m
0<w; <1 i=1,---,m
1Tw=m-—r
w,+w; >1; i=1,...,m/2.
j=m/2+1i.

where the last constraint in the above problem, rules the
interaction between the zero and non-zero elements of the
vector x.

4. APPLICATION TO HAMMERSTEIN NONLINEAR
MODEL

There are multitude of problem formulations that we could
adopt to illustrate the above circle of ideas. We adopt
one particular strategy to illustrate but anticipate that
the same general methodology would apply, mutatis mu-
tandis, to other black-box nonlinear system identification
problems.

We begin with generalised Hammerstein model (3). We can
then use the ideas of section 3 to apply two constraints,
namely

(i) Only a fixed number (say M) of parameters can be
used (M < (N +1)P).

(ii) We could extend the above idea to incorporate the
standard Hammerstein structure by adding a group
constraint to the parameters. Namely, if any parameter
in a group {h;(ni),n1 = 1,..., N} is non-zero, then all
parameters in that group can be non-zero.

To satisfy condition (i), we can use the ideas presented in
section 3.2. Then we impose the cardinality constraint by
requiring

hj(ni)wjn, =0 (4)
0<wjn, <1 (5)
P N
S>> wjm, =(N+1)P-M (6)
j=1n1=1

Additionally, condition (ii) can be seen as a group con-
straint, as the discussed in section 3.3. Specifically, condi-
tion (ii) can be easily satisfied by including the following
additional constraints

Wj1 =Wj2 ="'+*=WjN-1= WjN jzl,...,P. (7)
5. SIMULATION STUDY

We simulate the following system
y(k) = (k)"0 + n(k) (8)
where

up(k:— 1)

Lu”(k = N) ]
We note that this system potentially has (N +1)P param-
eters, but we restrict the model so that only M parameters
are non-zero. However, we assume that the specific loca-
tion of the non-zero elements is unknown. We then choose
to fit a generalised Hammerstein model of the form (3)
where we set P = 3, N = 7, but we consider that only
M = 4 parameters take a non-zero value. Notice that the
model potentially contains 24 parameters.

Consider that we are given Ng = 1000 input-output
samples. The identification problem can be formulated as
the following least squares optimisation problem
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Fig. 1. Error bar plot over 100 MonteCarlo simulations.

0EOCRP(N)
subject to cardd < M
where
[ w(N)TT
p(N +1
P = ( . ) (10)
L (V)T
[ y(V)
y(N +1)
Y = . (11)
L y(Ns)

We run N,,. = 100 Monte Carlo simulations, with different
realization of the input {u(k)}, of the noise {n(k)} and
different 6, all having at most M = 4 non-zero elements.
The input and the noise are taken to be zero-mean
Gaussian with unitary variance. The non-zero elements of
6 are draw for a normal distribution.

We compare the estimates obtained by solving problem
Pnsi with the estimates obtained via Ordinary Least
Squares.

Figures la-1b show the estimation mean and variance
of the estimation error over the MonteCarlo simulations.

Figures la shows the estimation error of the proposed
approach, and Figure 1b shows the estimation error for
the least squares estimates. Notice that the estimation
error of the proposed approach has much smaller variance
than the estimation error of the least squares estimate.
This confirms the principal claim of the paper, namely,
that the use of rank constrained optimisation gives a
superior bias-variance trade-off in the context of nonlinear
system identification. Also, note that in 86% of cases
the methodology recovered the correct model structure.
Interestingly, in the 13% of the cases where one of the
non-zero elements was chosen erroneously, and in 1% of
the cases two non-zero elements were chosen erroneously.
Note, that the missed parameters were very small making
its selection unimportant to the overall model behaviour.

6. CONCLUSIONS

We have applied recently developed ideas for rank con-
strained optimisation to nonlinear system identification.
The advantages of the proposed approach have been illus-
trated via a numerical example.
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